If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5y^2+9y-14=0
a = 5; b = 9; c = -14;
Δ = b2-4ac
Δ = 92-4·5·(-14)
Δ = 361
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{361}=19$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-19}{2*5}=\frac{-28}{10} =-2+4/5 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+19}{2*5}=\frac{10}{10} =1 $
| x+2x^2+2=0 | | -8x+10=2 | | 5d+6=7d | | x-2/3x=1/3x+2 | | x-2/3x=1/3x=2 | | 363b/362b=2162-b | | 3/x+4=5/x+3 | | 3/x+3=5/x+3 | | 3(-8)+y=-8 | | 3(-7)+y=-8 | | 4(2p-3)-8(6p-4)=20 | | 84+(0.3X)=x | | 3(-6)+y=-8 | | 3(-5)+y=-8 | | 8.4+(0.3x)=x | | 9+3.5g=11-0,5g | | 2y-(3-(y-5))=1 | | 3x2(x-9)=8xx2 | | 3+12x=-1 | | 5+(p-1)/2=p | | 1/3x+5=1/2x | | 5(x-2)=2(7x-4) | | F(x)=x2-2 | | 7x+9-3×=-17.5 | | 16u-4-2u=4u-12-6 | | 20-5+4K=2-2k | | X-x/4+1/2=3+x/4 | | 5x-12=-(-3×+24) | | 6x+5.6=8x-4.4 | | 4d-4=5d- | | 3/8xC=9/40 | | x+2x+1=-1 |